Higher-order symmetric duality for a class of multiobjective fractional programming problems
نویسنده
چکیده
Correspondence: gaoyingimu@163. com Department of Mathematics, Chongqing Normal University, Chongqing 400047, China Abstract In this paper, a pair of nondifferentiable multiobjective fractional programming problems is formulated. For a differentiable function, we introduce the definition of higher-order (F, a, r, d)-convexity, which extends some kinds of generalized convexity, such as second order F-convexity and higher-order F -convexity. Under the higher-order (F, a, r, d)-convexity assumptions, we prove the higher-order weak, higher-order strong and higher-order converse duality theorems. Mathematics Subject Classification (2010) 90C29; 90C30; 90C46.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملSymmetric duality for multiobjective fractional variational problems with generalized invexity
The concept of symmetric duality for multiobjective fractional problems has been extended to the class of multiobjective variational problems. Weak, strong and converse duality theorems are proved under generalized invexity assumptions. A close relationship between these problems and multiobjective fractional symmetric dual problems is also presented. 2005 Elsevier Inc. All rights reserved.
متن کاملMond-Weir type multiobjective second-order fractional symmetric duality with (φ, ρ)-invexity
In this paper, we start our discussion with a pair of multiobjective MondWeir type second-order symmetric dual fractional programming problem and derive weak, strong and strict duality theorems under second-order (φ, ρ)-invexity assumptions.
متن کاملA note on symmetric duality in vector optimization problems
In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".
متن کامل